Part Number Hot Search : 
BLV935 33000 PKT33A N301489 560D0 MTP50W HT27C512 7W14F
Product Description
Full Text Search
 

To Download S2036 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 S2036 open fiber control bicmos pecl clock generator ? device specification open fiber control S2036 features ? implements redundant safety interlock for laser- based fiber optic systems ? functionally compliant with ansi xt311 fibre channel physical standard ? enables class 1 safety compliance for fda, ansi, and iec guidelines ? operates with the amcc s2042/s2043, and s2044/s2045 fibre channel chipsets at 265.625, 531.25, and 1062.5 mbit/s ? on-chip ring oscillator ? ultra low power operation ? 28-pin soic package ? pecl interface applications ? laser-based fiber optic systems ? medical and laboratory instrumentation ? high-speed data and telecommunications - supercomputer - frame buffer - mainframe - switched networks - broadcast - mass storage/raid - environments - workstation figure 1. system block diagram general description the S2036 is designed specifically to implement the fibre channel open fiber control (ofc) system, a redundant safety interlock feature for laser-based fi- ber optic systems. it is functionally compliant with the ansi xt311 fibre channel physical standard and implements the ofc system defined by that standard, to detect when the optical link has been disrupted and shut down the laser or reduce the opti- cal power level. the S2036 employs effectively redundant paths, each of which can independently turn off the laser. the chip meets the requirements of class 1 safety limits defined by fda, ansi, and iec. it is fully com- patible with amcc's s2042/s2043 and s2044/ s2045 fibre channel chipsets at 265.625, 531.25, and 1062.5 mbit/s operation. it features low-power operation and a 28-pin soic package. figure 1 shows the S2036 used in a typical network configuration. optical rx optical rx optical tx optical tx s2043 or s2045 rx s2042 or s2044 tx S2036 open fiber control (ofc) s2042 or s2044 tx s2043 or s2045 rx S2036 open fiber control (ofc)
2 S2036 open fiber control overview the ofc system is an open fiber link detection and laser control system specified in ansi xt311 fibre channel physical standard. it is used as a safety interlock for point-to-point optical fiber links that use semiconductor laser diodes as the optical source. the major reason for implementing ofc is that the optical power levels required to obtain the desired level of system performance in fibre channel ex- ceeds the class 1 limits defined by national and international laser safety standards, if the optical fi- ber link between two optical ports is disconnected, such as would occur with an opened connector or a cut fiber. it is extremely important that requirements for class 1 classification are met, due to the poten- tial for customer exposure to laser radiation. since it is only when an optical link is opened that a user can be exposed to laser radiation, implement- ing ofc allows class 1 classification requirements to be met, since it can detect when the link has been disrupted and can shut down the laser or reduce the optical power level. the S2036 complies fully with the ofc specifications and class 1 requirements. refer to the ansi fibre channel standard document for details of ofc operation. figure 2. functional block diagram circuit operation whenever the fiber data link is disrupted (by a cut fiber or a disconnected connector), the S2036 detects the disruption and forces the transceiver into a repetitive pulsing mode of operation with a very low duty cycle. the link returns to normal operation only when the device detects that the disruption has been repaired and the proper reconnection handshake has taken place between the two transceivers in the link. as seen in the module block diagram in figure 2, two loss-of-light control paths are provided and both must be satisfied before the laser can be activated. each path has a separate digital filter, state ma- chine, and a counter. two loss-of-light detectors each feed a digital filter. the output of each filter is or/equaled to produce an interval loss-of-light (lol) signal. if the refckin is too fast or too slow, the clock detector causes the laser to be deacti- vated. two laser driver control outputs are independently capable of disabling the laser drive circuitry. they are of opposite polarity to prevent voltage control problems from accidentally activating the laser. the link status output signals the user system when the link is inactive. a power-on-reset signal is used to synchronize the counters and state machines. three user system control lines, laser fault, link control and loopback enable, force the S2036 to disable the laser drive circuitry and turn off the laser. digital filter or/ eql state machine and de-glitch and counter counter pulse repetition timer and inv and inv state machine or/ eql digital filter clock detect lol1 lnkctrl loopen csrw lol2 ldenp ldenn ofcdefb ofcdef lnkstat lol1b (pecl) laserflt csstrobe reset por system clock select ring oscillator refckin cntrl1/cntrl1b cntrl0/cntrl0b cntrl2 testen prt(2:0) 3 3 3
3 S2036 open fiber control s y mbol descri p tion 25 mb y te/s 50/100 mb y te/s units cntrl0/0b counter control 0 low high t pulse duration time 617 154 m sec t pulse repetition time 10.1 10.1 sec t stop time 1234 617 m sec ldenon lol1 & lol2 inactive to ldenp/n 24 24 m sec ldenoff lol1 or lol2 active to ldenp/n 20?0 20?0 m sec ldon laser turn?n time ldenon + laser activation time ldoff laser turn?ff time ldenoff + laser deactivation time pdf1 propagation delay, fiber 1 pdf2 propagation delay, fiber 2 the two state machines are independent and identi- cal, and contain the logic to detect when the optical link becomes open due to a disconnection or break. they also preside over the link reconnection hand- shake when it detects that the link is reconnected. ofc time periods the ofc system uses a repetitive pulsing technique (i.e., laser activated for t microseconds every t sec- onds) during the time that a link is open in order to reduce the maximum possible exposure to a value which allows for classification as a class 1 laser product. the maximum average power level per pulse is a function of the wavelength, pulse duration (t), and pulse repetition frequency (prf = 1/t). to function correctly, each short-wavelength optical link port must contain a transmitter/receiver unit that has implemented the ofc system with compatible ofc interface timings. the timing values that are consistent with the stated maximum transmitter re- ceptacle power and current (1990) iec laser safety restrictions for a class 1 system are shown in table 1. these time periods, when used according to the ofc interface specification described in this section, should result in a laser product which conforms to current (1990) emission requirements for class 1 classification worldwide. note, however, that classifi- cation of a laser product must always be verified with measurements and calculations and not assumed. the connection and disconnection handshake timing is shown in figures 5 and 6. the connection hand- shake is performed at link initialization or at the automatic recovery from intentional or accidental in- terruption of the optical path. the pulse duration, t, is chosen to meet the maximum average power level while allowing for the propagation delay through both fibers and the light detection and laser turn-on delay of the complete transceiver system. this margin is shown as t seth . similarly, the stop time t s is set at either 2t or 4t to assure that the detected pulse origi- nates from a properly functioning ofc node. this is accomplished by the detection of loss of light for a time t setl prior to the end of the stop time. in figure 5, the master node is the one whose 10.1 second timer expires first after the reconnection is complete. figure 6 illustrates the reaction of the system to the disruption of one fiber (the one between the master transmitter and the slave receiver). since the other fiber is still intact in this example, the master trans- mitter is shown as again having its 10.1 second timer expire first, but then resynchronizing to the re- ceived pulse from the slave transmitter. safety documentation/usage restrictions shortwave laser transceiver products incorporating the ofc system in order to assure class 1 compli- ance shall include the following two usage restrictions as part of the products user, mainte- nance, and safety documentation: table 1. selectable ofc time periods s t t t t t t
4 S2036 open fiber control a)the laser product shall be used in point-to-point optical links only. the ofc safety system is incompatible with other types of link connections (i.e., multiple input or output links). failure to comply with this usage restriction may result in incorrect operation of the link and points of access that may emit laser radiation above the limit for safety class 1 systems established by one or more national or international laser safety standards. b)normal operation of the point-to-point optical link requires that the laser product shall be connected only to another fibre channel compatible laser product that includes the ofc safety system. in addition, each of these products must be certified as safety class 1 laser products according to the laser safety regulations and/or standards in existence at the time of manufacture. the certification ensures that each of the products will function correctly in the event of a fault in one of the safety control systems. it is the responsibility of the interface designer tassure that the redundancy and freedom from single point failure sensitivity incorporated in the fibre channel standard and the design of the S2036 are fully implemented in the final laser product. these imple- mentation criteria shall include but are not limited to: a)biasing of the ldenp/n signal lines with 10k w resistors external to the S2036 assures that the non-operating state of the laser is forced if the S2036 is removed or destroyed while the system is operating. b)use of the redundant control signals (cntrl0b and cntrl1b) to assure safe operation or no op eration in the event of a single point failure of any control signal. figure 3. ofc connections s2044 fiber channel transmitter ofc s2045 fiber channel receiver cntrl (1:0) cntrl 1(1b:0b) por lnkctrl refckin loopen laserflt fiber optic tx fiber optic rx sd+:1=light, 0=no light sd?1=no light, 0=light + laser enable ?laser enable data loss of signal (pecl) sd+ sd- data lockdetn lol1 lol1b lol2 tclk ldenn ldenp ofcdef ofcdefb warning! important! the S2036 is equipped with an overrride func- tion to permit activation of the attached laser during module level testing. this function is op- erable with the testen held in the active high state and ofcdef held high and ofcdefb held low only. it is the responsibility of the manufacturer to isolate these inputs from acci- dental activation by the end user. failure to do so may void the certification of the module or the oem system for laser safety class 1 op- eration. digital filter the digital filters integrate the incoming signals to improve their reliability. the filters sample at a faster rate when acquiring a light-present signal and at a slower rate when dropping a light-present signal, while maintaining the correct handshake timing.
5 S2036 open fiber control state machine the state machine is implemented per the fibre channel fc-ph document, paragraph 6.2.3 and an- nex i. the ofc time periods are user-selectable to comply with the operating frequency of the serial link. the selectable ofc time periods are seen in table 1. the pulse repetition time is fixed for both 25, 50, and 100 mbyte applications to 10.1 seconds. the inputs to the state machine are the loss of light indicators (dc and ac) and the power-on reset. the timing of the state machine transitions is controlled by the decode times. the timing of the laser control signals will not necessarily be synchronous to the system clock because of the long counter times involved. link initialization following a power-on-reset cycle, the ofc device will be in the stop state as defined in the fibre channel standard. the default state for the internal loopback control is loopback active. a control/status write cycle is required together with a logic high on the loopen input in order to place the ofc in the reconnect state allowing the repetitive pulsed out- put operation. the required timing for this write cycle is shown in figure 5. reference clock select the reference clock is user-selectable to be 53 mhz or 26 mhz. the reference clock input is divided by four if a 53-mhz clock is used, or by two for a 26- mhz clock so that all state machine and counter clocks operate at 13 mhz. refer to figure 3 and figures 7 through 10 for suggested connections. clock detect the clock detect circuitry compares the reference clock input and the ring oscillator. if the ring oscilla- tor and the reference clock frequencies do not compare as selected by ctrl2, ctrl1/1b, and ctrl0/0b, the laser is disabled to prevent it from staying on or increasing the laser duty cycle. de-glitch logic the de-glitch logic debounces the power-on reset and the link control pin to eliminate potential glitching of the laser control lines. counter the two counter blocks are redundant functions which generate the selected decode timing used by the state machines. (see table 1 for ofc time peri- ods.) one of the counters is used as the lower part of the 10.1 sec pulse repetition timer. pulse repetition timer the pulse repetition timer generates the 10.1 sec decode timer used by the state machines. in test mode it is broken up into three counter stages which is output on the prt<0> pin. figure 4. loopback enable write access 0? ofc enabled , 1 ? laser off loopen csrw trwsu tcsmpw trwh tch tcsu csstrobe s y mbol description min max units trwsu csrw setup time before csstrobe rising edge 5 ns trwh csrw hold time after csstrobe rising edge 5 ns tcsu loopen setup time before csstrobe rising edge 5 ns tch loopen hold time after csstrobe rising edge 5 ns tcsmpw csstrobe minimum pulse width 15 ns
6 S2036 open fiber control pin assignment and descriptions e m a n n i pe m a n n i p e m a n n i p e m a n n i pe m a n n i pl e v e ll e v e l l e v e l l e v e ll e v e lo / io / i o / i o / io / i# n i p# n i p # n i p # n i p# n i pn o i t p i r c s e dn o i t p i r c s e d n o i t p i r c s e d n o i t p i r c s e dn o i t p i r c s e d r o pl t ti4 e h t y b d e l p m a s s i h c i h w , l a n g i s t e s e r n o - r e w o p w o l e v i t c a . y r t i u c r i c g n i h c t i l g e d w r s cl t ti6 e h t e l b a n e o t w o l e b t s u m . t u p n i e t i r w / d a e r s u t a t s / l o r t n o c . l a n g i s e l b a n e k c a b p o o l e h t f o g n i k c o l c n i k l c f e rl t ti2 e t a t s e h t r o f k c o l c r e t s a m e h t s a d e s u k c o l c z h m - 6 2 r o z h m - 3 5 g n i r e h t y b d e r o t i n o m s i k c o l c s i h t . s r e t n u o c e h t d n a e n i h c a m k l c t o t d e i t e b d l u o h s n i p s i h t . y c n e u q e r f t c e r r o c r o f r o t a l l i c s o . 4 4 0 2 s e h t f o 0 l r t n cl t ti3 2e n i m r e t e d t a h t s e u l a v r e t n u o c e h t s l o r t n o c . 0 l o r t n o c r e t n u o c r e s a l s 7 1 6 r o f w o l o t t e s e b d l u o h s t i . s d o i r e p e m i t e d o c e d e h t o s l a s i t i ) . 1 e l b a t e e s ( . s e s l u p r e s a l s 4 5 1 r o f h g i h d n a s e s l u p . y r t i u c r i c r o t a l l i c s o g n i r e h t y f i r e v o t g n i t s e t e c i v e d g n i r u d d e s u b 0 l r t n cl t ti0 1e b d l u o h s . 0 l r t n c r o f p u k c a b a . b 0 l o r t n o c r e t n u o c s i h t f o e s u l l u f e h t . e t a t s c i g o l e m a s e h t o t n e v i r d y l t n e d n e p e d n i o t e u d e s l u p s - 7 1 6 a f o n o i t a r e n e g d e t n a w n u e h t s t n e v e r p n i p n o w o l e s l a f a . w o l c i g o l o t 0 l r t n c f o e r u l i a f t n i o p - e l g n i s a e h t f o t e s e r a n i t l u s e r l l i w b 0 l r t n c n o h g i h e s l a f a r o 0 l r t n c n e h w t u o t s e t o t r o t a l l i c s o g n i r e h t s t c e l e s d n a 6 3 0 2 s s 4 5 1 n i t l u s e r l l i w 0 l r t n c n o h g i h e s l a f a . w o l s i n e t s e t . s e s l u p 1 l r t n cl t ti2 2, n i p 2 l r t n c e h t h t i w r e h t e g o t , n i p s i h t . 1 l o r t n o c r e t n u o c s i k c o l c e c n e r e f e r e h t f i . y c n e u q e r f k c o l c e c n e r e f e r e h t s t c e l e s e h t f i . w o l e b t s u m 2 l r t n c d n a , h g i h e b t s u m n i p s i h t , z h m 3 5 e b h t o b t s u m 2 l r t n c d n a n i p s i h t , z h m 6 2 s i k c o l c e c n e r e f e r . w o l b 1 l r t n cl t ti9 d l u o h s d n a 1 l r t n c r o f p u k c a b a s i n i p s i h t . b 1 l o r t n o c r e t n u o c . e t a t s c i g o l e m a s e h t o t n e v i r d y l t n e d n e p e d n i e b 2 l r t n cl t ti5 2e h t t c e l e s o t 1 l r t n c h t i w d e s u s i n i p s i h t . 2 l o r t n o c r e t n u o c . w o l o t t e s e b d l u o h s d n a y c n e u q e r f k c o l c e c n e r e f e r k c t s e tl t ti8 2n e h w r o t a l l i c s o g n i r e h t e c a l p e r o t t s e t n i d e s u s i t u p n i k c o l c s i h t . w o l r o h g i h h t o b e r a b f e d c f o d n a f e d c f o 1 l o l b 1 l o l l c e pi1 1 2 1 l a c i t p o n a t a h t s e t a c i d n i , w o l n e h w . w o l e v i t c a . 1 t h g i l f o s s o l s i l a n g i s t o nt o n t o n t o nt o n . r e v i e c e r c i t p o r e b i f e h t o t t u p n i e h t t a t n e s e r p r e b i f e h t f o n i p l a n g i s f o s s o l e h t o t d e i t e b t s u m s n i p e s e h t ) . 3 e r u g i f e e s ( . n o i t c n u f l a n g i s f o s s o l c d a r o f r e v i e c e r c i t p o 2 l o ll t ti3 1l a c i t p o n a t a h t s e t a c i d n i , h g i h n e h w . h g i h e v i t c a . 2 t h g i l f o s s o l s i l a n g i s t o nt o n t o n t o nt o n s i h t . r e v i e c e r c i t p o r e b i f e h t o t t u p n i e h t t a t n e s e r p s s o l c a n a r o f l a n g i s n t e d k c o l 4 4 0 2 s e h t o t d e i t e b t s u m n i p ) . 3 e r u g i f e e s ( . n o i t c n u f l a n g i s f o
7 S2036 open fiber control pin assignment and descriptions (continued) e m a n n i pe m a n n i p e m a n n i p e m a n n i pe m a n n i pl e v e ll e v e l l e v e l l e v e ll e v e lo / io / i o / i o / io / i# n i p# n i p # n i p # n i p# n i pn o i t p i r c s e dn o i t p i r c s e d n o i t p i r c s e d n o i t p i r c s e dn o i t p i r c s e d n e p o o ll t ti8 r e s a l e h t s e t a v i t c a e d , h g i h n e h w . h g i h e v i t c a , e l b a n e k c a b p o o l e h t f o s s e l d r a g e r ) n n e d l d n a p n e d l h t o b ( s n i p e l b a n e e d o i d d n a w r s c e h t y b d e l b a n e s i t i . e n i h c a m e t a t s e h t f o e t a t s s i r e s a l e h t e c n o . s e c i v e d 5 4 / 4 4 0 2 s e h t f o k l c t e h t y b d e k c o l c y b n o k c a b t i n r u t n a c m e t s y s c f o e h t y l n o , f f o d e n r u t . e k a h s d n a h n o i t c e n n o c e r k n i l a g n i m r o f r e p t l f r e s a ll t ti4 2l l i w n i p s i h t , h g i h n e h w . h g i h e v i t c a , l a n g i s t l u a f r e s a l d n a p n e d l h t o b ( s n i p e l b a n e e d o i d r e s a l e h t e t a v i t c a e d s t r e s s a . e n i h c a m e t a t s e h t f o e t a t s e h t f o s s e l d r a g e r ) n n e d l m e t s y s c f o e h t y l n o , f f o d e n r u t s i r e s a l e h t e c n o . t a t s k n l n o i t c e n n o c e r k n i l a g n i m r o f r e p y b n o k c a b t i n r u t n a c . e k a h s d n a h l r t c k n ll t ti3 l l i w n i p s i h t , h g i h n e h w . h g i h e v i t c a , t u p n i l o r t n o c k n i l d n a p n e d l h t o b ( s n i p e l b a n e e d o i d r e s a l e h t e t a v i t c a e d s i t i . e n i h c a m e t a t s e h t f o e t a t s e h t f o s s e l d r a g e r ) n n e d l d e l b a n e e d o i d r e s a l e h t f o s n o i t i s n a r t s u o i r u p s r e t l i f o t d e h c t i l g e d n a c m e t s y s c f o e h t y l n o , f f o d e n r u t s i r e s a l e h t e c n o . s l a n g i s . e k a h s d n a h n o i t c e n n o c e r k n i l a g n i m r o f r e p y b n o k c a b t i n r u t e b o r t s s cl t ti7 e l b a n e k c a b p o o l e h t k c o l c o t d e s u , t u p n i e b o r t s s u t a t s / l o r t n o c . 4 4 0 2 s e h t f o n i p k l c t e h t o t d e i t e b o t d e d n e t n i s i t i . l a n g i s f o e g d e g n i s i r e h t n o d e k c o l c s i l a n g i s e l b a n e k c a b p o o l e h t . e b o r t s s c n e t s e tl t ti4 1r o t s i s e r n w o d - l l u p l a n r e t n i . t u p n i e l b a n e t s e t h g i h e v i t c a e b o t r e t n u o c n o i t i t e p e r e s l u p e h t s e c r o f n i p s i h t . d e h c a t t a d n a s e s o p r u p t s e t r o f s r e t n u o c l a u d i v i d n i e v i f o t n i p u n e k o r b t u o t s e t o t k c t s e t s t c e l e s d n a t u p t u o n n e d l e h t s e l b a s i d . w o l r o h g i h h t o b e r a b f e d c f o d n a f e d c f o n e h w f e d c f ol t ti5 l a n r e t n i . h g i h e v i t c a . t u p n i d e c r o f e l b a n e e d o i d r e s a l e v i t i s o p e h t f o l o r t n o c c f o e h t s e d i r r e v o . d e h c a t t a r o t s i s e r n w o d - l l u p d e l b a n e e b o t r e s a l e h t s e c r o f d n a e l b a n e e d o i d r e s a l e v i t i s o p . h g i h s i n e t s e t n e h w , t s e t r o f b f e d c f ol t ti6 2l a n r e t n i . w o l e v i t c a . t u p n i d e c r o f e l b a n e e d o i d r e s a l e v i t a g e n e h t f o l o r t n o c c f o e h t s e d i r r e v o . d e h c a t t a r o t s i s e r p u - l l u p d e l b a n e e b o t r e s a l e h t s e c r o f d n a e l b a n e e d o i d r e s a l e v i t a g e n . h g i h s i n e t s e t n e h w , t s e t r o f t a t s k n ll t to 1 2m e t s y s e h t o t s e t a c i d n i . e v i t c a n i k n i l = h g i h . t u p t u o s u t a t s k n i l n o i t i d n o c l a n g i s f o s s o l a o t e u d e v i t c a n i s i k n i l e h t n e h w . e d o m k c a b p o o l g n i r u d e v i t c a . m e t s y s c f o e h t y b d e t c e t e d . d e t r e s s a s i l a n g i s t l f r e s a l n e h w d e t r e s s a t u o t s e tl t to7 2s i n e t s e t n e h w t u p n i k c t s e t s t u p t u o . l a n g i s t u p t u o t s e t r o , w o l r o h g i h h t o b e r a b f e d c f o d n a f e d c f o d n a h g i h d n a w o l s i n e t s e t n e h w 4 y b d e d i v i d r o t a l l i c s o g n i r s t u p t u o h g i h s t u p t u o , e s i w r e h t o . h g i h s i b 0 l r t n c d n a w o l s i 0 l r t n c . e c n a d e p m i
8 S2036 open fiber control pin assignment and descriptions (continued) e m a n n i pe m a n n i p e m a n n i p e m a n n i pe m a n n i pl e v e ll e v e l l e v e l l e v e ll e v e lo / io / i o / i o / io / i# n i p# n i p # n i p # n i p# n i pn o i t p i r c s e dn o i t p i r c s e d n o i t p i r c s e d n o i t p i r c s e dn o i t p i r c s e d p n e d ll t to 6 1e h t f o t u p t u o . h g i h e v i t c a , t u p t u o e l b a n e e d o i d r e s a l e v i t i s o p f o n i p e l b a n e e v i t i s o p e h t o t d e i t e b d l u o h s d n a e n i h c a m e t a t s s n i p e l b a n e e d o i d r e s a l e h t f o h c a e . r e t t i m s n a r t e d o i d r e s a l e h t y r t i u c r i c e v i r d r e s a l e h t g n i l b a s i d f o e l b a p a c y l t n e d n e p e d n i e r a e t i s o p p o f o e r a s n i p e l b a n e e h t . ) s h t a p l o r t n o c e t a r a p e s a i v ( y l l a t n e d i c c a m o r f s m e l b o r p l o r t n o c e g a t l o v t n e v e r p o t y t i r a l o p . r e s a l e h t g n i t a v i t c a n n e d ll t to 7 1e h t f o t u p t u o . w o l e v i t c a , t u p t u o e l b a n e e d o i d r e s a l e v i t a g e n f o n i p e l b a n e e v i t a g e n e h t o t d e i t e b d l u o h s d n a e n i h c a m e t a t s s n i p e l b a n e e d o i d r e s a l e h t f o h c a e . r e t t i m s n a r t e d o i d r e s a l e h t y r t i u c r i c e v i r d r e s a l e h t g n i l b a s i d f o e l b a p a c y l t n e d n e p e d n i e r a e t i s o p p o f o e r a s n i p e l b a n e e h t . ) s h t a p l o r t n o c e t a r a p e s a i v ( y l l a t n e d i c c a m o r f s m e l b o r p l o r t n o c e g a t l o v t n e v e r p o t y t i r a l o p . r e s a l e h t g n i t a v i t c a 2 t r p 1 t r p 0 t r p l t to 8 1 9 1 0 2 s u b s i h t , e d o m g n i t a r e p o l a m r o n n i . s t u p t u o e m i t n o i t i t e p e r e s l u p n o ( s r e t l i f l a t i g i d 1 l o l d n a 2 l o l e h t f o t u p t u o e h t s r o t i n o m f o s s o l s t n e s e r p e r h g i h c i g o l . ) y l e v i t c e p s e r , 1 t r p d n a 2 t r p n e t s e t n i . 6 3 0 2 s e h t f o t e s e r l a n r e t n i e h t s r o t i n o m 0 t r p . t h g i l e t a t s f o t u p t u o n o r e s a l e h t r o t i n o m 1 t r p d n a 2 t r p , e d o m r e t n u o c e h t f o d n e e h t s r o t i n o m 0 t r p e l i h w , 1 d n a 2 s e n i h c a m . ) 2 9 1 9 / k l c f e r r o 6 9 0 4 / k l c f e r ( n i a h c d d vv 5 +C 1 ) v 5 + ( y l p p u s r e w o p d n gv 0C 5 1d n u o r g
9 S2036 open fiber control figure 6. ofc transceiver disconnect handshake timing slave rx slave tx master rx master tx t ldoff t ldoff t pdf1 t pdf2 t off t t t t connected fibers disrupted fiber 1 figure 5. ofc transceiver connection handshake timing master tx slave rx slave tx master rx t t t t t t s t pdf1 t ldon t pdf2 t seth t setl disconnected fibers connected fibers (link established)
10 S2036 open fiber control ? ? ? cntrl2 cntrl1/1b cntrl0/0b S2036 53.125 mhz 10k w 10k w data 10 refclk tclk s2044 xmit 53.125 mhz ttl refckin suggested circuit for 531.25 mbit/s, 10 bit data path S2036 refckin driven by s2044 tclk ldenp ldenn +5v +5v figure 7. suggested circuit for 531.25 mbit/s operation with s2044 in 10-bit mode figure 8. suggested circuit for 1062.5 mbit/s operation with s2044 in 20-bit mode cntrl2 cntrl1/1b cntrl0/0b S2036 refclkin ldenp ldenn 10k w 10k w refclk tclk 20 data 53.125 mhz s2044 xmit 53.125 mhz ttl +5v ? ? ? suggested circuit for 1062.5 mbit/s operation S2036 refckin driven by s2044 tclk +5v applications suggestions refckin connection options the S2036 can be used with the s2044 or s2045 with only the addition of attenuating resistors for the reference clock source. figure 7 shows the connec tion of the reference clock with the s2044 operating in the 10 bit mode at 531 mbit/s data rate. the clock trace lengths should be minimized. figures 8C10 illustrate representative (but not ex- haustive) combinations of cntrl inputs and refclkin drive sources.
11 S2036 open fiber control figure 10. suggested circuit for 265.625 mbit/s operation with s2044 in 10-bit mode cntrl2 cntrl1/1b cntrl0/0b S2036 refckin ldenp ldenn 10k w 10k w refclk tclk 26.5625 mhz s2044 xmit 26.5625 mhz ttl +5v ? ? ? suggested circuit for 265.625 mbit/s operation S2036 refckin driven by s2044 tclk 20 data +5v figure 9. suggested circuit for 531.25 mbit/s operation with s2044 in 20-bit mode cntrl2 cntrl1/1b cntrl0/0b S2036 refclkin ldenp ldenn 10k w 10k w refclk tclk 26.5625 mhz s2042 xmit 53.125 mhz ttl +5v ? ? ? suggested circuit for 531.25 mbit/s operation S2036 refckin driven by s2044 tclk 20 data +5v
12 S2036 open fiber control all dimensions are nominal in inches figure 12. 28-pin package and pinout .289 .005 .406 .010 .704 .005 .029 typ top view .101 .010 .018 typ .050 pitch typ .092 .005 1 2 3 4 5 6 7 8 9 10 11 12 13 14 testck testout ofcdefb cntrl2 laserflt cntrl0 cntrl1 lnkstat prt0 prt1 prt2 ldenn ldenp gnd 28 27 26 25 24 23 22 21 20 19 18 17 16 15 vdd refckin lnkctrl por ofcdef csrw top view csstrobe loopen cntrl1b cntrl0b lol1 lol1b lol2 testen lol1/1b single-ended application the lol1/lol1b inputs are defined as pecl differ- ential inputs. the macro design allows either input to be set to a fixed voltage in a range from 1.25v to 3.75v, and thus used as a threshold voltage for the other input. if the lol1b input were connected to a resistor voltage divider providing ~1.5v, the lol1 input can then be considered a single-ended ttl input. a suitable divider can be formed with a 33kw resistor and a 13kw resistor. for a vcc of 5.0v, this would provide a threshold of 1.4v. if the ttl input levels of vihmin = 2.0v and vilmax = 0.8v are as- sumed, the 1.4v threshold gives a minimum of 600mv of margin. the macro requires 300mv for reliable switching, so this threshold gives a 2x mar- gin at worst case ttl input levels. 33k w 13k w +5v lol (ttl) lol1 lol1b S2036 figure 11. lol1/1b single-ended ttl input
13 S2036 open fiber control absolute maximum ratings supply voltage v dd 7.0v ttl input voltage v dd + 0.3v operating junction temperature t j +150 c storage temperature -55 to +150 c input pin current -10ma to 10ma 25 c lead temperature 300 c 10 sec. pecl input dc characteristics v dd = 4.75v to 5.25v symbol conditions min typ max unit v ih v dd C 600 mv v il v dd C 2000 mv v id 250 5 500 1400 mv i ih 20 m a i il -1 m a ttl input/output dc characteristics symbol parameter test conditions comm. 0 to 70 c unit min typ 1 max v ih 2 input voltage high guaranteed input high 2.0 v voltage for all inputs v il 2 input voltage low guaranteed input low 0.8 v voltage for all inputs v oh output voltage high v dd = min, i oh = 2.4 v -4ma for testout -8ma for all other outputs v ol output voltage low v dd = min, i ol = 0.4 v 4 ma for testout 8 ma for all other outputs i ozh output off current high v dd = max, v out = 2.4v -10 10 m a i ozl output off current low v dd = max, v out = 0.4v -10 10 m a i ih input current high v dd = max, v in = v dd max see note 3 m a i il input current low v dd = max, v in = 0v see note 4 m a recommended operating conditions parameter min nom max unit supply voltage (v dd ) 4.75 5.0 5.25 v operating temperature 0 70 c ambient ambient junction temperature 130 c supply current (i dd )1419ma 1. typical limits are at 25 c, v dd = 5.0v. 2a. these input levels provide a zero noise immunity and should only be tested in a static, noise-free environment. 2b. use extreme care in defining input levels for dynamic testing. many outputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach v il or v ih until the noise has settled. amcc recom- mends using v il 0.4v and v ih 3 2.4v for dynamic ttl testing and v ilmin and v ihmax for pecl testing. 3a. i ih (min) = 36 m a; i ih (max) = 142 m a for ofcdef, testen. 3b. i ih (max) = 1 m a for all other inputs. 4a. i il = -1 m a for refckin, lnkctrl, por, csrw, csstrobe, loopen, cntrl1b, cntrl0b, lol2, cntrl1, cntrl0, laserflt, cntrl2, testck. 4b. i il (min) = -115 m a; i il (max) = -33 m a for ofcdefb. 5. not production tested.
14 S2036 open fiber control amcc clock driver products are available in several output skew and shipping configurations. the order number is formed by a combination of: ? device number ? package type ? optional shipping configuration S2036 a /t optional shipping configuration blank = 25-unit tube /d = dry pack /td = tape, reel and dry pack package option a = 28-pin small outline integrated circuit (soic) device number example: S2036a 28-pin soic package, shipped in the standard tube, dry packed. ordering information amcc is a registered trademark of applied micro circuits corporation. copyright ? 1997applied micro circuits corporation june 2, 1997 amcc reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the informati on being relied on is current. amcc does not assume any liability arising out of the application or use of any product or circuit described herein, neither do es it convey any license under its patent rights nor the rights of others. amcc reserves the right to ship devices of higher grade in place of those of lower grade. amcc semiconductor products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. applied micro circuits corporation ? 6290 sequence dr., san diego, ca 92121 phone: (619) 450-9333 ? (800)755-2622 ? fax: (619) 450-9885 http://www.amcc.com c e r t i f i e d i s o 9 0 0 1


▲Up To Search▲   

 
Price & Availability of S2036

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X